

# LINEAX-6

Linear Motor Driven Stage



Lineax®-6 A linear motor driven stage suitable for applications where reliable 24/7 operation, precision positioning and ease of use are desirable characteristics. The versatile 150 mm x 46mm envelope is well suited for many instrument type machines and robotic devices

#### **Features and Benefits**

Direct drive linear motors for stage positioning exhibit advantages over conventional screw driven stages. Lacking the elastic deformation seen in screw drive systems allows direct drive systems to produce more compliant positioning trajectories, faster settling times, higher repeatability and faster servo response. Free of rotating inertia, much faster acceleration and higher velocities are achievable. Wear of rotating components is eliminated increasing reliability, uptime, and extending servicing intervals each of these contributes to reducing cost of ownership. The direct drive linear motor with the high-resolution encoder allows precise velocity regulation.

- Environmentally hardened.
- Precision guide system provides stable trajectory across long travel and at high speeds.
- Powerful linear motors are used in the Lineax series.
- High-resolution linear encoders are incorporated to allow precise position feedback and closed

### **Superior Mechanical Design**

all structural materials are high-strength aluminum alloys, all surfaces are precision machined, hard coat-anodize finished. Two precision re-circulating linear ball bearings are guided by 2 integrally pre-loaded ball tracks on each rail. The guide system has extended 5 year intervals only for lubrication service.

#### **Compact Envelope**

Stages have a compact envelope with no motor overhang. Motor and encoder cables are routed in an external cable loop for long life and serviceability. The connection port is at the stage end with axial bulkhead exit.

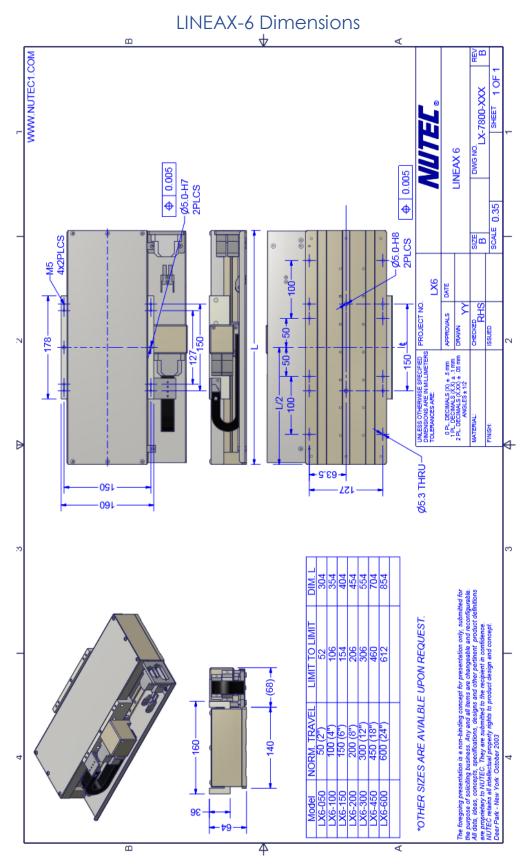
#### **Precision Positioning**

is an outstanding precision linear motor positioning stage. Well suited for applications in the semiconductor, instrumentation, fiber-optic, biomedical, laser and micro-machining industries. Special finishes like Teflon impregnated hard-coat, non-anodized, and electro less Nickel can be furnished to accommodate specific application environments. Stainless steel components are made from polished material.

www.nutec1.com Page | 1



## LINEAX-6 Specifications


|                           | LX-6 SP           |
|---------------------------|-------------------|
| Travel Length             | 50-600 mm         |
|                           | Brushless Linear  |
| Drive System              | Servo Motor       |
| Maximum Acceleration      | Payload Dependent |
| Maximum Speed             | Unladen 2 m/s     |
| Maximum Peak Force        | 202 N             |
| Maximum Continuous Force  | 45 N              |
| Recommended payload limit | 10 kg / 25 lbs    |

|                       | LX-6050    | LX-6100     | LX-6200    | LX-6300    | LX-6450    | LX-6600    |  |  |
|-----------------------|------------|-------------|------------|------------|------------|------------|--|--|
| Travel Length         | 50 mm      | 100 mm      | 200 mm     | 300 mm     | 450 mm     | 600 mm     |  |  |
| Trajectory Control    |            |             |            |            |            |            |  |  |
| Accuracy              |            |             |            |            |            |            |  |  |
| Standard SP           | ± 5 μm     | ± 10 μm     | ± 20 μm    | ± 25 μm    | ± 30 μm    | ± 35 μm    |  |  |
| High Precision HP     | ± 2 μm     | ± 4 μm      | ± 8 μm     | ± 10 μm    | ± 12 μm    | ± 15 μm    |  |  |
| Straightness/Flatness |            |             |            |            |            |            |  |  |
| Standard SP           | ± 4 μm     | ± 8 μm      | ± 10 μm    | ± 12 μm    | ± 15 μm    | ± 20 μm    |  |  |
| High Precision HP     | ± 2 μm     | ± 4 μm      | ± 5 μm     | ± 5 μm     | ± 5 μm     | ± 5 μm     |  |  |
| Yaw/Pitch/Roll        |            |             |            |            |            |            |  |  |
| Standard SP           | 10 arc-sec | 15 arc-sec  | 20 arc-sec | 30 arc-sec | 40 arc-sec | 50 arc-sec |  |  |
| High Precision HP     | 5 arc-sec  | 7.5 arc-sec | 10 arc-sec | 15 arc-sec | 20 arc-sec | 25 arc-sec |  |  |
| 2 Axis System         |            |             |            |            |            |            |  |  |
| Orthogonality X-Y     |            |             |            |            |            |            |  |  |
| Standard Precision SP | 10 arc-sec | 10 arc-sec  | 10 arc-sec | 10 arc-sec | 10 arc-sec | 10 arc-sec |  |  |
| High Precision HP     | 5 arc-sec  | 5 arc-sec   | 5 arc-sec  | 5 arc-sec  | 5 arc-sec  | 5 arc-sec  |  |  |
| Extra High            |            |             |            |            |            |            |  |  |
| Precision XHP         | 3 arc-sec  | 3 arc-sec   | 3 arc-sec  | 3 arc-sec  | 3 arc-sec  | 3 arc-sec  |  |  |

- All trajectory data based on axis uniformly supported over full length on precision mounting surface with vibration isolation.
- Payload capacities are recommended values to achieve maximum lifetime in the worst-case scenario featuring maximum dynamic operation and off-center loading.
- Force, acceleration and speed performance are based on operations with NUTEC ELECTRONIC controls.

www.nutec1.com Page | 2





www.nutec1.com Page | 3